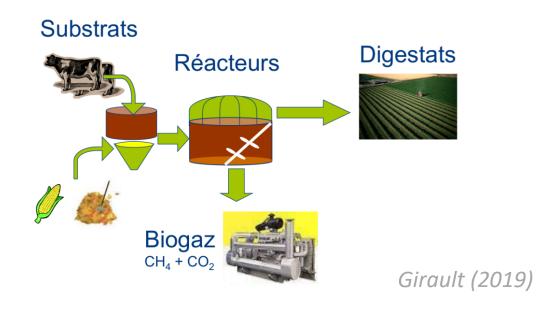
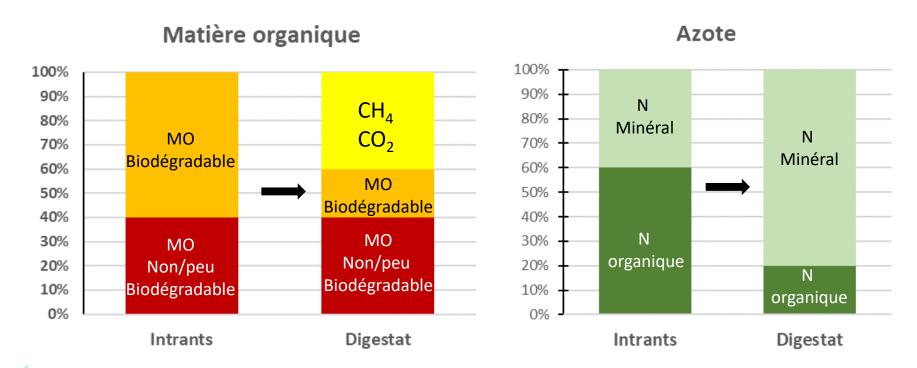
Intérêts du retour au sol des digestats

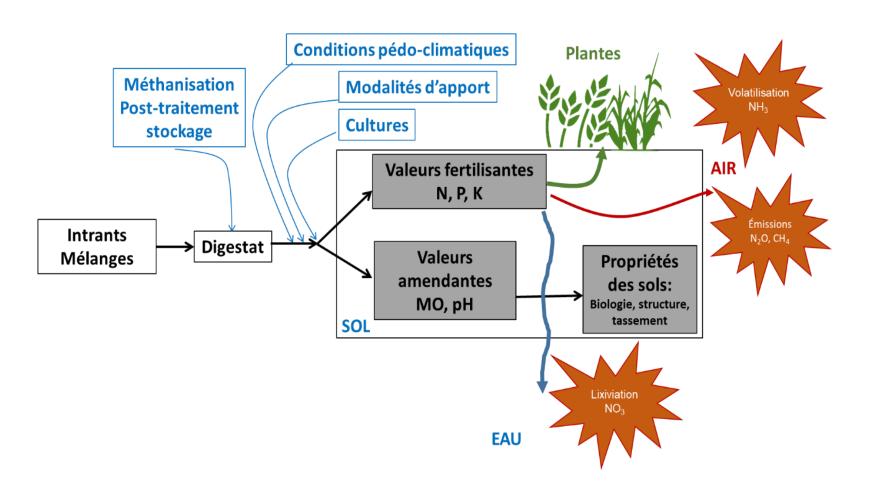
S.Houot¹, F.Levavasseur¹, A.Michaud², J. Jimenez³....


- 1. INRAE, AgroParisTech, Université Paris Saclay, UMR ECOSYS, 78850 Thiverval-Grignon
- 2. INRAE, Institut Agro, UMR SAS, 35000 Rennes
- 3. INRAE, UR LBE, 11100 Narbonne

Méthanisation et digestats

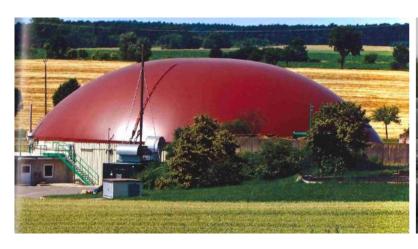
- Diversité des intrants: Effluents d'élevage, CIVEs, biodéchets, boues, déchets agro-indistriels....
- Résidu de la méthanisation : le digestat → retour au sol
- Caractéristiques digestats: f(substrats, procédés)
- Effets au champ: f(digestat, pratiques)



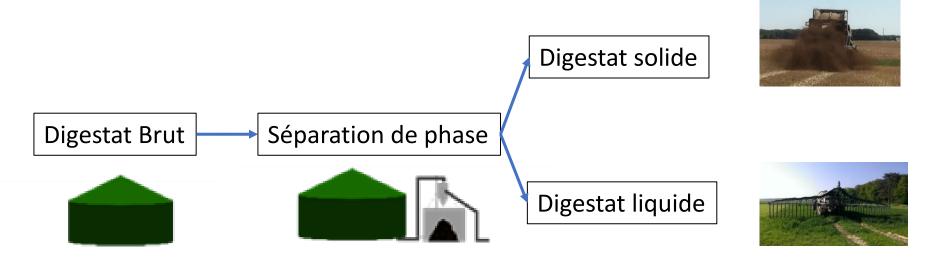


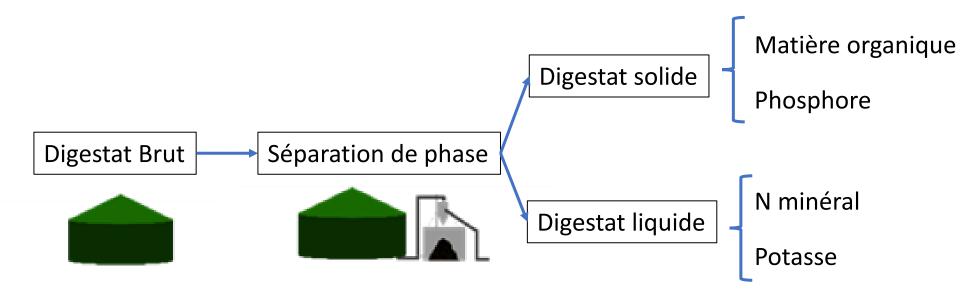
Transformation de la matière au cours de la méthanisation

- Dégradation de la matière organique :
 - umatière organique dans le digestat, mais augmentation de la stabilité
 - Conservation de l'azote dans le digestat, et 7 de la fraction minérale
 - Conservation des autres éléments (P, K...)
 - Conséquences pour l'intérêt agronomique?


Intérêts des digestats: apport de fertilisants et de matière organique

Des méthanisations et des digestats


- Variabilité des process (voie humide / sèche, continue / discontinue)
- Variabilité des post-traitements (séparation de phase plus ou moins poussée)
- Variabilité des intrants (effluents d'élevage, CIVEs, déchets agro-industriels, boue STEP...)
 - → Grande diversité des digestats


Séparation de phase

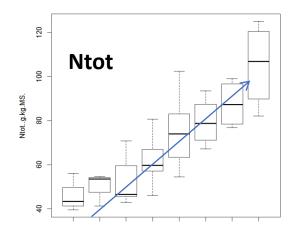
Centrifugation >> presse à vis

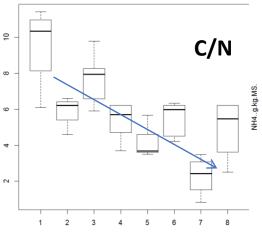
Séparation de phase

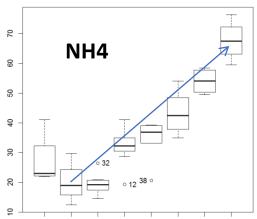
Centrifugation >> presse à vis

Classes de digestats

Digestats bruts AAMF

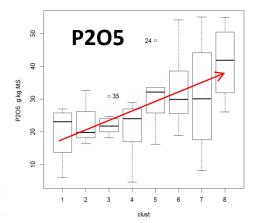

Classe Intrants Fumiers+Vgtx


- 2 Fumiers + Vgtx+ Lisier Rum.
- 3 **Fumiers**

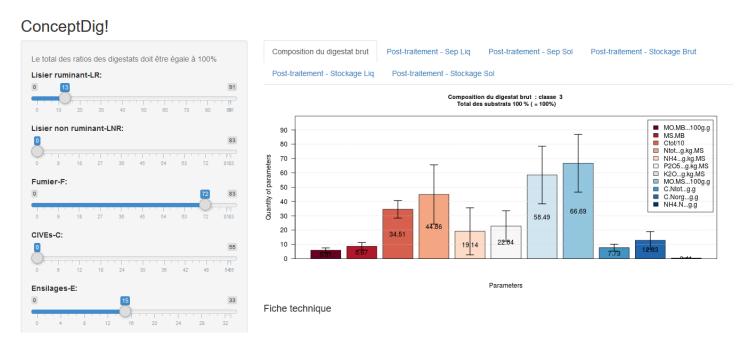

1

- **Lisier Ruminant** 4
- 5 Lisier NR + Biodéchets
- **Lisier NR** 6
- Lisier Ruminant + Graisse
- 8 Lisier NR+ Graisse

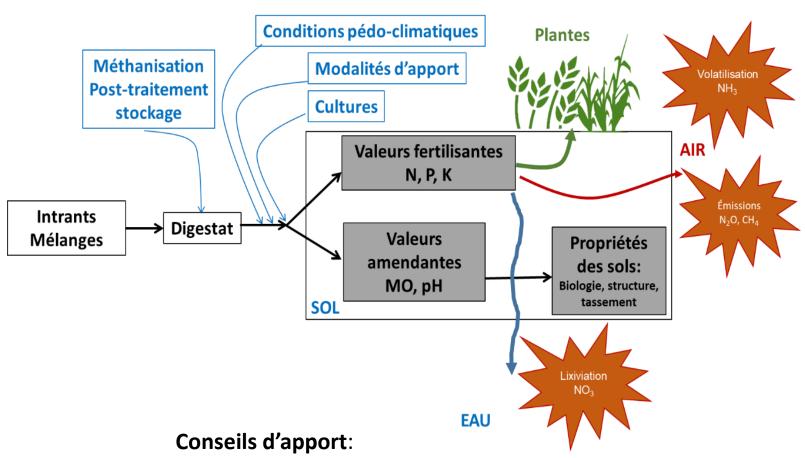
MS



- MS et N opposés; même classification pour MS et C/N
- Effet fertilisant augmente de classe 1 à classe 8
- Effet amendant diminue mais moins clair (pas de classification sur les teneurs en MO)



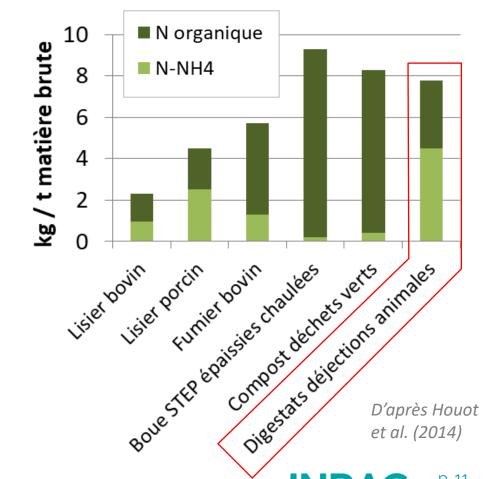
Outil Concept-Dig


 Développement d'un outil pour prédire la composition des digestats à partir des intrants (Jimenez et al., en cours) https://vrossard.shinyapps.io/ConceptDig/

- Consolidation dans le cadre du projet Fertidig (Ademe)
- Classes de digestats et prédiction de l'intérêt agronomique

Intérêts des digestats: apport de fertilisants

- Adapter aux besoins des plantes: doses et périodes d'apport pour limiter les excès d'azote et risques de pertes par lixiviation
- Modes d'apport pour limiter les pertes par volatilisation
- Guides de préconisation d'usage : APT, FertiDig

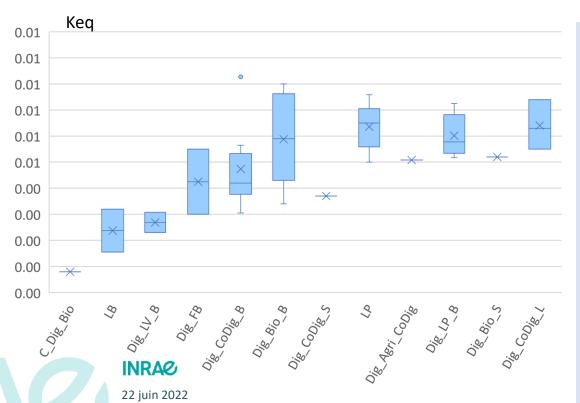


Valeur fertilisante azotée

 Valeur fertilisante azotée à court terme d'un Produit Résiduaire Organique (PRO) : N minéral + minéralisation N organique

Digestats

- Teneur en azote assez élevée par rapport aux autres PRO
- Fraction de l'azote sous forme minérale élevée → azote immédiatement disponible pour les cultures
- Economie d'engrais minéral surtout en cas d'intrants extérieurs


Valeur fertilisante azotée: équivalence aux engrais

Travail en cours

100 kg N digestat = Keq (%) kg N engrais

- La méthanisation augmente la disponibilité du N (Le compostage la diminue)
- Valeur fertilisante directement liée à la teneur en N minéral

Code figures	Nomenclature			
C-Dig-Bio	Urbain_Compost_digestat_biodechets			
LB	Effluent_Elevage_Lisier_bovins			
Dig-LV-B	Effluent_Elevage_Digestat_lisier volailles_brut			
Dig-FB	Effluent_Elevage_Digestat_fumier bovins			
Dig-CoDig-B	Effluent_Elevage_Digestat_co-digestion_brut			
Dig-Bio-B	Urbain_Digestat_biodechets_brut			
Dig-CoDig-S	Effluent_Elevage_Digestat_co-digestion_solide			
LP	Effluent_Elevage_Lisier_porc			
Dig-Agri-CoDig	Autre_Agricole_Digestat_co-digestion			
Dig-LP-B	Effluent_Elevage_Digestat_Lisier_Porc_brut			
Dig-Bio-S	Urbain_Digestat_biodechets_solide			
Dig-CoDig-L	Effluent_Elevage_Digestat_co-digestion_liquide			

Keq < 0.3

Compost digestat biodéchets Lisier bovins Digestat litière volaille brut

Keq 0.3-0.6

Digestat fumier bovins
Digestat codigestion EE brut/solide
Digestat biodéchet brut

Keq ≥ 0.6

Lisier porcs

Digestats agri. codigestion brut

Digestat codigestion EE liq.

Digestat lisier porc brut

Digestat biodéchet solide (confirmer)

Valeur azotée et volatilisation ammoniacale

Valeur fertilisante azotée à court terme fortement liée à la teneur en azote ammoniacale, généralement élevée → **importance de limiter la volatilisation**

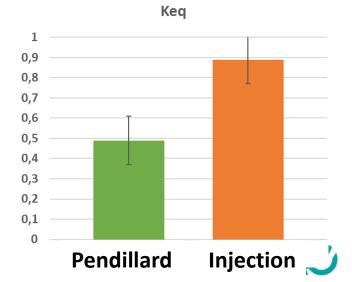
Apport 20 m³/ha de digestat sur orge hiver AB

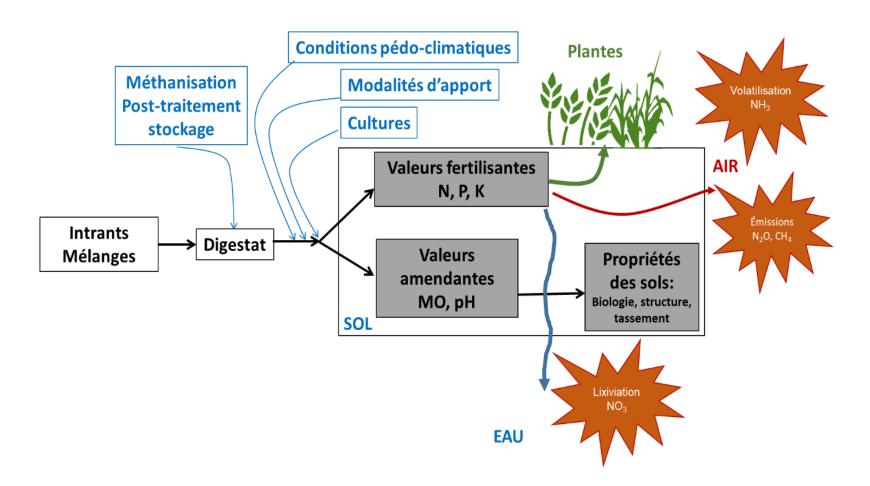
Chambre agriculture grand est, 2019

Buse palette

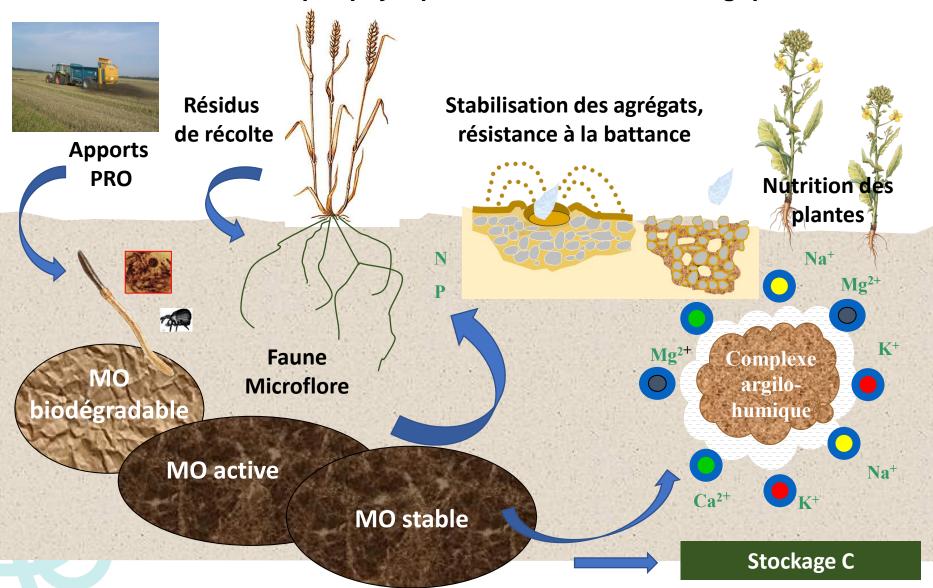
rendement: 35 qx/ha

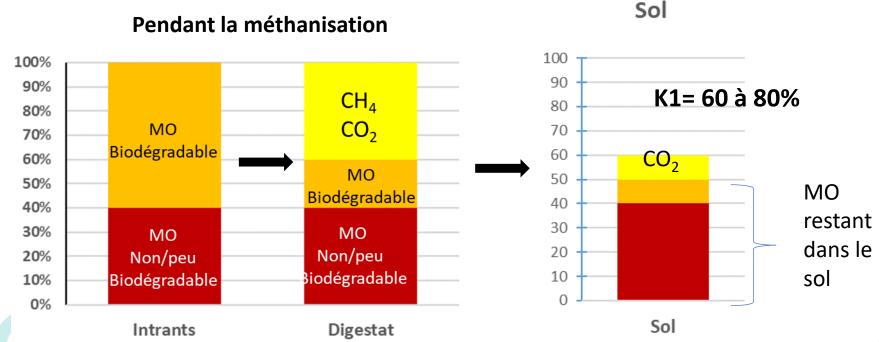
Pendillard


Rendement: 43 qx/ha

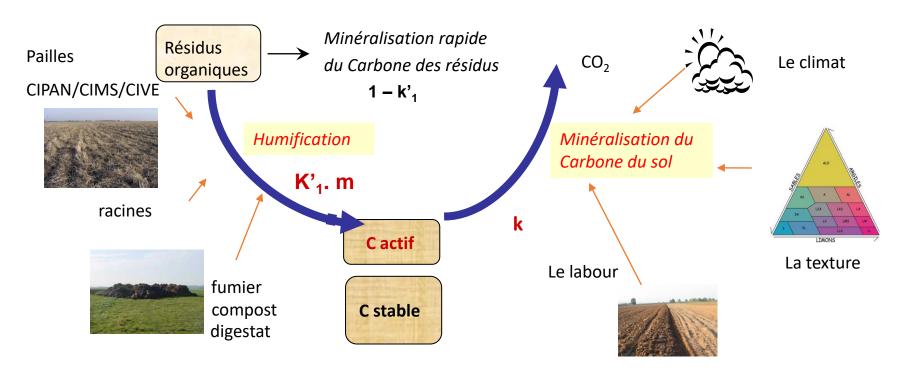

Importance de l'enfouissement pour réduire la volatilisation

Decoopmann et al. (2017): essais CRAB


Intérêts des digestats: apport de matière organique


Importance de la matière organique dans les sols

- Rôle environnemental: stockage C
- Fertilité chimique, physique des sols; Activité biologique


Valeur amendante – matière organique

- Valeur amendante (capacité à augmenter la MO du sol), dépend :
 - Teneur en carbone organique du digestat
 - Stabilité du carbone
- Perte de carbone pendant la méthanisation : réduction de 50 % environ de la teneur en carbone par rapport aux intrants
- Après apport au sol → poursuite dégradation → MO restant : valeur amendante (coefficient isohumique, K1....)

Dynamique de la matière organique dans les sols

 Un modèle simple de prédiction de l'évolution des stocks de MO: AMG (Andriulo, Mary, Guerif, 1999)

Les principes du calcul: $C_a \approx 33\% C_{org}$

 $dC/dt = k'1.m - k.C_a$

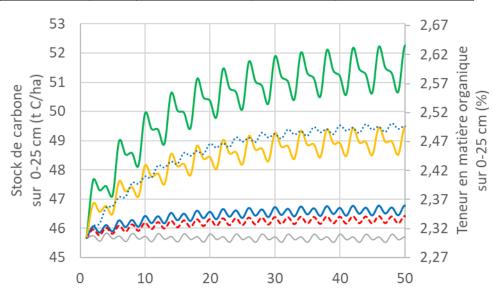
k= 0.02 à 0.06 fonction teneur argile, calcaire, travail du sol

Valeur amendante des digestats: effet d'apports répétés

Importance de la fréquence d'apport et des caractéristiques des digestats

traitements	Fréquence (an ⁻¹)	Teneur C (% MB)		Dose par apport		
			K ₁	Matière brute	Carbone	Carbone humifié
				(t MB/ha)	(t C/ha)	(t C/ha)
Témoin sans apport	<u>-</u>	-	_	-	<u>-</u>	-
Compost de déchets verts	0,25	12	0,82	20	2,40	1,97
Digestat territorial brut	0,25	2,7	0,60	20	0,54	0,32
Digestat territorial liquide	0,25	1,5	0,73	20	0,30	0,22
Digestat territorial solide	0,25	9,8	0,58	20	1,96	1,14
Digestat territorial brut	1	2,7	0,60	20	0,54	0,32

—— Témoin sans apport


Compost de déchets verts 1 an/4

Digestat territorial brut 1 an/4

---- Digestat territorial liquide 1 an/4

Digestat territorial solide 1 an/4

...... Digestat territorial brut tous les ans

p. 18

22 juin 2022

Conclusion

- Grande variabilité des digestats selon les intrants et le process
 - Développer des typologies et des classes d'effet (Concept-Dig, Fertidig)
- Valeur fertilisante azotée à court terme fortement dépendante de la teneur en azote ammoniacale
 - Importance des intrants extérieurs
 - Importance de limiter la volatilisation ammoniacale (enfouissement, bonnes conditions météo...)
 - A adapter aux besoins des plantes
 - Mettre en place des guides de bonnes pratiques (APT, Fertidig)
- Valeur amendante + élevée que les matières entrantes :
 - ne compense pas tout à fait la perte de carbone lors de la méthanisation
 - Efficacité dépend de la fréquence d'apport et des caractéristiques
- Impacts environnementaux:
 - volatilisation et lixiviation → bonnes pratiques
 - Tassement des sols → pratiques d'apport
 - Effets sur la biologie → Methabiosol
 - Contaminants et pathogènes: nombreux programmes en cours

> Merci de votre attention

